Polyvinyl Chloride: Exploring the Prevalence of Polyethylene Terephthalate in Our Daily Lives

What is PVC?


Polyvinyl chloride, commonly abbreviated as PVC, is a thermoplastic polymer. It is the third most widely produced polymer after polyethylene and polypropylene. PVC has a wide range of applications in construction materials, toys, pipes, wires, medical devices, and more due to its low production cost, workability, and resistance to corrosion.

Chemical Structure and Properties of PVC

PVC is formed by the polymerization of vinyl chloride monomer. The chemical structure of PVC consists of carbon, hydrogen, and chlorine atoms. It is a linear polymer with alternate single and double carbon-chlorine bonds. This molecular structure gives PVC its characteristic properties. PVC is a hard, stiff material with high tensile strength and excellent electrical insulation. It becomes flexible and pliable at higher temperatures but reverts to its original form when cooled. PVC is also noted for being lightweight, easy to work with, and offers good resistance to corrosion from acids, alkalis, and oil. Its toughness and durability make it suitable for a diverse set of applications.

Production Process for PVC

The production of PVC involves a two-step process - manufacture of vinyl chloride monomer (VCM) followed by polymerization of VCM into PVC polymer. In the first step, ethylene or acetylene is reacted with hydrogen chloride gas in the presence of a catalyst to produce VCM. In the second step, VCM undergoes polymerization either by suspension polymerization or emulsion polymerization methods to form PVC resin. The PVC resin is then compounded with additives, stabilizers, and fillers before processing into finished products. The worldwide production of PVC stands at over 40 million tons annually.

Applications of PVC in Construction


As a rigid thermoplastic polymer, PVC finds its major application in the construction industry due to the favorable properties of strength, durability, flame resistance, and cost-effectiveness. PVC piping is extensively used for supplying potable water and drainage systems due to its inorganic nature and resistance to corrosion. Rigid PVC sheets are used as roofing and siding materials in buildings for their light weight, low maintenance, and weather resistance characteristics. PVC windows commonly replace wooden windows owing to advantages such as no painting or rottenness. PVC flooring has emerged as a popular alternative to vinyl floor tiles, laminate, and ceramic tiles. PVC doors have also gained preference over wood or metal doors for homes and commercial spaces. Overall, PVC accounts for approximately 35% of plastic usage in construction applications worldwide.

Applications of Polyvinyl Chloride in Medical Devices


PVC is preferred for medical devices and tubing applications due to its sterilizability, clarity for visual inspections, flexibility, and economical processing. Common examples include tubing for dialysis and transfusion sets, drug and infusion containers, blood and plasma bags, medical device tubing, and respiratory appliances. Soft PVC is favored for items that contact the skin like catheters and implants due to its flexibility. Scientific instruments for laboratories also use PVC extensively owing to its chemical resistance and self-extinguishing nature. PVC offers an ideal balance of properties compared to alternatives like polyethylene for most general-purpose medical polymer applications.

Use of PVC in Wire and Cable Insulation


PVC is the most widely used insulating material in electric cables and wires industries. It accounts for over 40% of the total plastic used in cable insulation globally. Low-smoke PVC formulations provide excellent flame retardancy and self-extinguishing properties required for wire safety. PVC also delivers high dielectric strength for voltage insulation, chemical and moisture resistance, flexibility, low toxicity, and affordability. Some key wire and cable applications utilizing PVC insulation include housing and construction wires, automobile wires, power cables, appliance cords, telecommunications cables, and sheathed cables. Its widespread usage is attributed to the ability to meet various performance standards demanded by the wire and cable industry.

Toys and Childcare Products using PVC


Soft PVC finds applications in the manufacturing of children's toys owing to safety, flexibility, and affordability. Common toy products made from PVC include dolls, action figures, balls, inflatable toys, play equipment, and more. Safety standards compliant soft PVC provides an ideal material for children to mouth and contact with their skin. In healthcare, PVC is preferred for products like baby bottles, nipples, and teethers due to non-toxicity and clarity. PVC swimming pool toys and equipment have benefits over natural rubber or harder plastics. Overall, the versatile properties of PVC allow its safe usage in a range of toy and infant care articles available at economical costs.


In conclusion, PVC has emerged as one of the most widespread and commercially important plastics globally due to its versatile characteristics suitable for a variety of applications. Advancements in polymerization and compounding techniques allow the versatile formulations of PVC suitable for construction, medical, wire, toys, and other industries. With over 60 years of usage, research into improving PVC continues as a dynamically evolving thermoplastic. It stands as a vital polymer material that has touched almost every aspect of modern life from infrastructure to healthcare to consumer products. Though environmental and health issues concerning plastic pollution persist, sustainable product and process innovations aim to mitigate these concerns of the popular but controversial plastic polyvinyl chloride.